

The California Climate Tracker:

A New Monitoring Tool

Kelly Redmond John Abatzoglou

Western Regional Climate Center Desert Research Institute Reno Nevada

California Climate Change Research Conference
Sacramento California 2007 September 10-13
Sponsors: California Energy Commission, CalFed, NOAA WRCC, DRI DAS

Future Projections

Global Mean Temperature

For various plausible emissions scenarios

Observations: What's actually been happening?

Courtesy of Mike Dettinger, USGS / Scripps.

Dettinger MD. 2005. From climate change spaghetti to climate-change distributions for 21st Century California. San Francisco Estuary and Watershed Science. Vol. 3, Issue 1, (March 2005), Article 4. http://repositories.cdlib.org/jmie/sfews/vol3/iss1/art4

Considerations for a California Climate Index system

Tracking California climate through time. For whatever reason, is it changing ???

Recent past: need to put this into longer perspective

Elements of greatest interest: Temperature and Precipitation

Best if a single value that can be remembered

Simple, intuitive, understandable
Audience: The public, news media, managers, legislators, policy, classroom

Should be physically meaningful

Should relate to impacts

Would like measures that correlate well with climate at smaller scales

Monthly update frequency

Should cover at least a century, late 1800s thru present. Paleo extension to blue oaks if possible.

Use station data or gridded data? Answer: Both.

Considerations for a California Climate Index system (continued)

Geographic complexity requires at least 5-7 regional indicators
Spatial coherence can vary by month and season
Spatial coherence can vary by element (temp, precip, wind, solar, etc)

Mountains, coasts, deserts can each have different time histories from those of the interior of California

Seasonal effects of: snow on ground, ocean upwelling, irrigation

Artificial human influences (for example, urban heat islands, irrigation)
Generally like to avoid these
However, in some cases need/want actual rather than adjusted values
Do we "correct" for these effects, or include or highlight them?
Observation time bias correction may be needed

Maximum and minimum temperatures can have different time histories

Need to be able to update each rapidly and on a schedule Need timely, accessible and reliable data (there when needed)

Need lengthy and compatible record from the past Need for stations not slated for termination Much prefer unchanging exposure Must have adjustment methods for dealing with incomplete data

How to determine sub-regions?

Expert judgment

Use existing patterns (for example, climate divisions)

Use objective techniques

Look for common behavior among station assemblages

Temporal correlation: "nearby" in behavior, not necessarily geography.

Clustering and pattern analysis, using EOFs / PCAs

Perform EOF rotation to produce geographic clusters

Compatibility with crop districts, counties, watersheds, admin boundaries

Corroboration from biomes or other ecological indicators

Analyses must usually be based on standardized values

Reconvert these to common units for presentation and portrayal

For simplicity, we mostly want just one set of sub-regions

344 U.S. Climate Divisions Monthly 1895-Present

How to portray sub-regions

Can this complexity be distilled ... to this ?

Eleven climate monitoring regions determined from this analysis

California Climate Tracker

Tracking Climate Variability and Change for the State

Climate Products Frames Version

Example: August 2007

California Climate Tracker

Courtesy of Mike Dettinger, USGS / Scripps.

Dettinger MD. 2005. From climate change spaghetti to climate-change distributions for 21st Century California. San Francisco Estuary and Watershed Science. Vol. 3, Issue 1, (March 2005), Article 4. http://repositories.cdlib.org/jmie/sfews/vol3/iss1/art4

California Statewide Mean Temperature Departure Jan-Dec

State Annual Mean Temp

California Statewide Maximum Temperature Departure Jan-Dec

State Annual Mean Max Temp

California Statewide

State Annual Mean Min Temp

California Statewide Temperature Departure Jan-Dec

State
Annual
Temperature
Summary

(Max, Mean, Min)

California Statewide Mean Temperature Departure Jul-Jun

Statewide 12-Month Winter-Centered Year (July-June)

Statewide Winter-Centered July-June

Mean Max Temperature

Mean Min Temperature

California Statewide Precipitation Jul-Jun

Is California in drought ???

Frequent question from the US Drought Monitor

Statewide
WinterCentered
July-June
Precipitation

California Statewide Last 12 Months

Quick monthly recap of the last 12 months for the selected region, in actual units.

Temperature

Precipitation

Interior California (I-5 Corridor)

Northern / Sacramento R Bay-Delta Southern / San Joaquin R

August 2007

California Statewide

Mean

+ 6.97 ± 4.42°F/100yr

58.9 °F (+ 1.4 °F)

61.0 °F (+ 3.5 °F) in 1958

53.0 °F (- 4.4 °F) in 1911

MEAN 57.5 °F

STDEV 1.62°F

BANK 100 of 113

Linear Trend 1975-present

2007

Warmest Year

Coldest Year

August

Summer 2007 (Jun-Jul-Aug)

MEAN 87.1°F STDEV 1.47 °F

RANK 91 of 113

MEAN 56.4 °F

STDEV 1.22 °F

BANK 109 of 113

California Statewide Maximum Temperature Departure Jun-Aug

Mean

Min

2.0

Linear Trend 1949-present

Linear Trend 1975-present

2007

Warmest Year

Coldest Year

Jun-Aug

+ 4.18 ± 1.52°F/100yr

+ 7.43 ± 3.41°F/100yr

58.0 °F (+1.7 °F)

59.3 °F (+ 2.9 °F) in 2006

53.0 °F (- 3.3 °F) in 1944

Miniumum Temperature Departure Jun-Aug

Interior California (I-5 Corridor) Mean Summer Temperature

Northern / Sacramento R

Bay-Delta

Southern / San Joaquin R

Interior California Summer (JJA) Max and Min Temperature
Northern / Sacramento R Bay-Delta Southern / San Joaquin R

Coldest Vea

59.6 °F (+ 3.1°F) in 2006

52.7°E (- 3.8°E) in 1909

57.9°F (+1.4°F)

STDEV 136°E

RANK 101 of 113

Warmest Year

Jun-Aug

62.0 °F (+ 3.2 °F) in 2006

MEAN 58.8 °F

BANK 104 of 113

Warmest Yea

Jun-Aug

55.8 °F (+ 3.3 °F) in 2006

MEAN 52.5 °F

BANK 110 of 113

Sierra Region
Mean Temperature Departure Jan-Dec

Sierra Nevada Annual Mean Temperature

Sierra Region

Maximum Temperature Departure Jan-Dec

Sierra Nevada Annual Maximum Temperature

Sierra Region
Miniumum Temperature Departure Jan-Dec

Sierra Nevada Annual Minimum Temperature

Sierra Region Temperature Departure Jan-Dec

Sierra Nevada Annual Temperature Summary

Maximum Mean Minimum

Smoothed Plus Annual

Sierra Region Mean Temperature Departure Jul-Jun

Sierra Nevada Winter-Centered July – June Temperature

Thru June 2007

Sierra Region Precipitation Jul-Jun

Sierra Nevada
Winter-Centered
12-Month
July - June
Precipitation

Thru June 2007

Change in P-E (2021-2040 minus 1950-2000)

Seager et al, 2007. Average of 19 climate models. Figure by Naomi Naik.

www.ldeo.columbia.edu/res/div/ocp/drought/science.shtml

Projected Change in Precipitation 1950-2000 to 2021-2040 (Percent of 1950-2000)

Average of 19 climate models. 2007.

10

9

8

6

5

4

3

2

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

Figure by Gabriel Vecchi.

www.ldeo.columbia.edu/r es/div/ocp/drought/scienc e.shtml

R. Seager, M.F. Ting, I.M. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, N. Harnik, A. Leetmaa, N.-C. Lau, C. Li, J. Velez, N. Naik, 2007. Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. *Science*, DOI: 10.1126/science.1139601

Fig. 1. Modeled changes in annual mean precipitation minus evaporation over the American Southwest $(125^{\circ}\text{W to }95^{\circ}\text{W and }25^{\circ}\text{N to }40^{\circ}\text{N}$, land areas only), averaged over ensemble members for each of the 19 models. The historical period used known and estimated climate forcings, and the projections used the SResA1B emissions scenario. The median (red line) and 25th and 75th percentiles (pink shading) of the P-E distribution among the 19 models are shown, as are the ensemble medians of P (blue line) and E (green line) for the period common to all models (1900–2098). Anomalies (Anom) for each model are relative to that model's climatology from 1950–2000. Results have been 6-year low-pass Butterworth-filtered to emphasize low-frequency variability that is of most consequence for water resources. The model ensemble mean P-E in this region is around 0.3 mm/day.

South Coast Region Precipitation Jul-Jun

July-June **Precipitation**

South Coastal **California**

1895-1896 thru 2006-2007

Conclusions

There is coherent large scale temperature structure that appears to be real

The state is warming

By how much? 1-2 F / century, faster lately (1.5 F / 50 yrs) last 56 years ... not all biases yet accounted for TMIN warming more than TMAX

Continued real need for baseline observations with unchanging exposures

Statewide average temperatures correlate reasonably well with most of the state Biggest exception: The Coast

Expert judgments that led to the NCDC Climate Divisions mostly well-founded Coastal strip stands out. Very narrow Northeast and US 395 corridor, and desert, need more refinement

Tracking indexes are quite feasible

- A. www.wrcc.dri.edu/monitor/cal-mon/index.html
- B. google "california climate tracker"

Discarded Slides

Data

NOAA Summary of the Day (SOD) Cooperative Network

Summarized to monthly time scale

Month is "present" if no more than 5 missing days

At least 75 percent of all months with data July 1948 – June 2006

(Will later cover the entire century)

In operation during January 2006

TMAX - 197 stations. TMIN - 195 stations TPCP - 200 stations

Infilling: Need techniques that have minimal effect on long-term variability

PRISM Gridded Monthly data

January 1895 through June 2006 4 km time series aggregated to 24 km grid for California

California
Statewide
Precipitation
Water Year
Oct-Sep

1895-96 / 2005-06

NCDC Climate Divisions

California Statewide Temperature

Water Year

Oct-Sep

1895-96 / 2005-06

